Antimicrobial properties of silver nanoparticles against biofilm formation by Pseudomonas aeruginosa on archaeological textiles

VIEWS - 324 (Abstract) 134 (PDF)
Katarzyna Pietrzak, Anna Otlewska, Michał Puchalski, Beata Gutarowska, Patricia Guiamet


The aims of this work were to: (i) microscopically analyse the pre- and post-Columbian archaeological textiles using Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis (SEM-EDX); (ii) microbiologically analyse the archaeological textiles (from the Southern Andean Area, La Plata Museum); (iii) determine the ability of Pseudomonas sp. isolates from archaeological textiles to biofilm formation by SEM; (iv) assess the anti-biofilm properties of AgNPs protecting cotton against Pseudomonas sp. Results showed the presence of bacteria with proteolytic and lipolytic activities on archaeological textiles, including Clostridium sp. and Pseudomonas aeruginosa. Two nucleotide sequences of 16S ribosomal RNA gene of P. aeruginosa strains were deposited in GeneBank NCBI database with accession numbers: KP842564 (strain 1) and KP842565 (strain 2). Those strains exhibited different morphological and growth characteristics: strain 1 with ability to form biofilms on archaeological textiles was rod-shaped, produced bluish-green pigment, and smaller than strain 2; and strain 2 was pleomorphic and produced brown pigment. The use of silver nanoparticles (90 ppm, φ 10–80 nm) allowed to protecting textiles against P. aeruginosa growth by 63%–97%, depending on the strain and exposition time.


archaeological textiles; Pseudomonas sp.; protection; silver nanoparticles; biofilm;SEM-EDX

Full Text:



Raffino R, 2002, Arte textil de la civilización andina (Colección Museo de La Plata), in Corpus Antiquitatum Americanensium, Prólogo, Tomo 4, Academia Nacional de la Historia-Union Academique Internationale, Buenos Aires, 10.

Strzelczyk A B, 2004, Observations on aesthetic and structural changes induced in Polish historic objects by microorganisms. International Biodeterioration and Biodegradation, vol.53(3): 151–156.

Szostak-Kotowa J, 2004, Biodeterioration of textiles. International Biodeterioration and Biodegradation, vol.53(3): 165–170.

Michaelsen A, Pinzari F, Ripka K, et al. 2006, Application of molecular techniques for identification of fungal communities colonizing paper material. International Biodeterioration and Biodegradation, vol.58(3–4): 133–141.

Lavin P, Gómez de Saravia S G and Guiamet P S, 2014, An environmental assessment of biodeterioration in document repositories. Biofouling: The Journal of Bio-adhesion and Biofilm Research, vol.30(5): 561–569.

Guiamet P, Pietrzak K, Gutarowska B, et al. 2015, Textiles de la puna argentina. Identifcación del biodeterioro a través de diferentes técnicas. IV Jornadas para el estudio de Bienes Culturales, 44–45.

Guiamet P, Igareta A, Battistoni P, et al. 2014, Fungi and bacteria in the biodeterioration of archaeological fibers. Analysis using different microscopic techniques. Revista Argentina de Microbiología, vol.46(4): 376–377.

Wolf S J, 2002, Appendix K: curatorial care of textile objects, in NPS Museum Handbook, Part I. National Park Service, USA.

Éri I, 2004, Conserving Textiles: Studies in Honour of Agnes Timár-Balázsy. ICCROM International Centre for the Study of the Preservation and Restoration of Cultural Property, Rome.

Sterflinger K, 2010, Fungi: their role in deterioration of cultural heritage. Fungal Biology Reviews, vol.24(1–2): 47–55.

Rutala W A and Weber D J, 1999, Infection control: the role of disinfection and sterilization. Journal of Hospital Infection, vol.43(Supplement 1): S43–S55.

Rakotonirainy M S, Fohrer F and Flieder F, 1999, Research on fungicides for aerial disinfection by thermal fogging in libraries and archives. International Biodeterioration and Biodegradation, vol.44(2–3): 133–139.

Rakotonirainy M S and Lavédrine B, 2005, Screening for antifungal activity of essential oils and related compounds to control the biocontamination in libraries and archives storage areas. International Biodeterioration and Biodegradation, vol.55(2): 141–147.

Kim J S, Kuk E, Yu K N, et al. 2007, Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, vol.3(1): 95–101.

Rai M, Yadav A and Gade A, 2009, Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, vol.27(1): 76–83.

Gutarowska B, Pietrzak K, Machnowski W, et al. 2014, Application of silver nanoparticles for disinfection of materials to protect historical objects. Current Nanoscience, vol.10(2): 277–286.

Pietrzak K, Gutarowska B, Machnowski W, et al. 2015, Antimicrobial properties of silver nanoparticles (AgNPs) misting on cotton fabrics. Textile Research Journal, vol.86(8): 812–822.

Rolandi de Perrot D S, 1972, Estudio sobre textiles del yacimiento arqueológico de santa Rosa de Tastil, Salta. Doctoral Thesis. Universidad Nacional de La Plata, Argentina.

Pinzari F, Montanari M, Michaelsen A, et al. 2010, Analytical protocols for the assessment of biological damage in historical documents. Coalition, vol.19: 6–13.

Borrego S, Guiamet P, Gómez de Saravia S, et al. 2010, The quality of air at archives and the biodeterioration of photographs. International Biodeterioration and Biodegradation, vol.64(2): 139–145.

Guiamet P, Borrego S, Lavin P, et al. 2011, Biofouling and biodeterioration in materials stored at the Historical Archive of the Museum of La Plata, Argentine and at the National Archive of the Republic of Cuba. Colloids and Surfaces B: Biointerfaces, vol.85(2): 229–234.

Madigan M T, Martinko J M, Dunlap P V, et al. 2009, Brock Biology of Microorganisms, 12th edition, Benjamin Cummings, San Francisco, USA.

Dortet L, Poirel L and Nordmann P, 2012, Rapid detection of carbapenemase-producing Pseudomonas spp. Journal of Clinical Microbiology, vol.50(11): 3773–3776.

Sneath P, Mair N and Sharpe M (eds), 1986, Bergey’s Manual of Systematic Bacteriology, Volume 2, Williams and Wilkins, Baltimore, MD, USA.

Kregiel D, Otlewska A and Antolak H, 2014, Attachment of Asaia bogorensis originating in fruit-flavored water to packaging materials. BioMed Research International, Article ID 514190, 6 pages.

Lavin P, Gómez de Saravia S and Guiamet P, 2016, Scopulariopsis sp. and Fusarium sp. in the documentary heritage: evaluation of their biodeterioration ability and antifungal effect of two essential oils. Microbial Ecology, vol.71(3): 628–633.

Wasiak R, Laskowski Z and Czyzyk J, 2012, The microbiological protection method of archive and museum objects and installation for the microbiological protection of archive and museum objects. Patent PL399507, Poland.

Gutarowska B, Skóra J, Zduniak K, et al. 2012, Analysis of the sensitivity of microorganisms contaminating museums and archives to silver nanoparticles. International Biodeterioration and Biodegradation, vol.68: 7–17.

Gutarowska B, Rembisz D, Zduniak K, et al. 2012, Optimization and application of the misting method with silver nanoparticles for disinfection of the historical objects. International Biodeterioration and Biodegradation, vol.75: 167–175.

AATCC Test Method 100-2012. Antibacterial finishes on textile materials: assessment of final report: R2014-295-2, 2014, viewed on November 3, 2015,

Timár-Balázsy A and Eastop D, 1998, Chemical Principles of Textile Conservation, Routledge, New York.

Evans E T, 1996, Biodegradation of cellulose. Biodeterioration Abstracts, vol.10(30): 275–285.

Jeffries T W, 1987, Physical, chemical and biochemical considerations in the biological degradation of wood, in Kennedy J F, Phillips G O, Williams P A (eds), Wood and Cellulosics: Industrial Utilization, Biotechnology, Structure and Properties. Ellis Horwood Limited, Chichester, p.213.

Szostak-Kotowa J, 2005, Fibres and nonwovens, in Zyska B, Żakowska Z (eds), Microbiology of Materials. Technical University of Lodz, Lodz, pp.89–136, Polish.

Flannigan B, Samson R A and Miller J D, 2001, Microorganisms in Home and Indoor Work Environments: Diversity, Health Impacts, Investigation and Control, Taylor and Francis, London/New York.

Pekhtasheva E, Neverov A, Kubica S, et al. 2012, Biodegradation and biodeterioration of some natural polymers. Chemistry and Chemical Technology, vol.6(3): 263–280.

Błyskal B, 2009, Fungi utilizing keratinous substrates. International Biodeterioration and Biodegradation, vol.63(6): 631–653.

Ágoston-Szabó E, Dinka M, Némedi L, et al. 2006, Decomposition of Phragmites australis rhizome in a shallow lake. Aquatic Botany, vol.85(4): 309–316.

Kalishwaralal K, BarathManiKanth S, Pandian S R K, et al. 2010, Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids and Surfaces B: Biointerfaces, vol.79(2): 340–344.

Palanisamy N K, Ferina N, Amirulhusni A N, et al. 2014, Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. Journal of Nanobiotechnology, vol.12: 2.

Königs A M, Flemming H C and Wingender J, 2015, Nanosilver induces a non-culturable but metabolically active state in Pseudomonas aeruginosa. Frontiers in Microbiology, vol.6: 395.

Jakimiak B, Röhm-Rodowald E, Staniszewska M, et al. 2006, Microbiological assessment of efficiency of anti-bacterial modified textiles. Roczniki Państwowego Zakładu Higieny, vol.57(2): 177–184.

Takai K, Ohtsuka T, Senda Y, et al. 2002, Antibacterial properties of antimicrobial-finished textile products. Microbiology and Immunology, vol.46(2): 75–81.



  • There are currently no refbacks.

Copyright (c) 2016 Katarzyna Pietrzak, Anna Otlewska, Michał Puchalski, Beata Gutarowska, Patricia Guiamet

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.