Distribution of phenolic compounds in rice seedlings under Cr exposure

VIEWS - 33 (Abstract) 9 (PDF)
Xiao-Zhang Yu, Fei-Fei Zhang

Abstract


Responses of phenolic compounds were hydroponically investigated in rice seedlings (Oryza sativa L. cv. XZX 45) treated with either Cr(III) or Cr(VI). Results indicated that rice seedlings are able to effectively sequester both species of Cr. Majority of Cr recovered in plant materials was accumulated in roots rather than shoots. Accumulation of total soluble phenolics, flavonoids and lignin in plant materials was quite evident due to Cr exposure, but displaying different responses between the two species of Cr. Distribution of total soluble phenolics and flavonoids was more at shoots, especially at younger segments of shoots, and less at roots, whereas the lignin content was detected more at the younger parts of shoots and less towards the root tips. It is suggestive from the current investigation that both Cr species caused production and accumulation of these secondary metabolites in rice seedlings.


Keywords


chromium; phenolic; flavonoids; lignin; Oryza sativa

Full Text:

PDF

References


Bartwal, A., Mall, R., Lohani, P., Guru, S.K. and Arora, S., 2012. Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. Journal of Plant Growth Regulation, 32(1), 216-232.

https://doi.org/10.1007/s00344-012-9272-x.

Chai, T.T. and Wong, F.C., 2012. Whole-plant profiling of total phenolic and flavonoid contents, antioxidant capacity and nitric ox- ide scavenging capacity of Turnera subulata. Journal of Medicinal Plants Research, 6(9), 1730-1735.

Ebbs, S.D., Piccinin, R.C., Goodger, J.Q.D., Kolev, S.D., Woodrow, I.E. and Baker, A.J.M., 2008. Transport of ferrocyanide by two eucalypt species and sorghum. International Journal of Phy- toremediation, 10(4), 343-357. https://doi.org/10.1080/15226510802096242.

Jia, S.Z., Tang M.C. and Wu J.M., 1999, The determination of flavonoide contents in mulberry and their scavenging effects on su- peroxide radicals. Food Chemistry, 64(4),555-559. https://doi.org/10.1016/S0308-8146(98)00102-2.

Jiang, L.L., Li, R.W., Mao, Y.Q. and Zhou, M., 2013. Present processing technology and comprehensive utilization of chromium slag. Environmental Science& Technology, 36, 480-483.

Kliebenstein, D.J., 2004.Secondary metabolites and plant/envi- ronment interactions: a view through Arabidopsis thaliana tinged glasses. Plant, Cell & Environment, 27(6), 675-684.

Kova´c˘ik, J., Klejdus, B. and Bac˘kor, M., 2009. Phenolic metabolism of Matricaria chamomilla plants exposed to nickel. Journal of Plant Physiology, 166(13), 1460-1464.

Lavid, N., Schwartz, A., Yarden, O. and Tel-Or, E., 2001. The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta, 212(3), 323-331. https://doi.org/10.1007/s004250000400.

Li, L., Shewry, P.R. and Ward, J.L., 2008. Phenolic acids in wheat varieties in the HEALTH GRAIN diversity screen. Journal of Agricultural and Food Chemistry, 56(21), 9732-9739. https://doi.org/10.1021/jf801069s.

Lo´pez-Luna, .J, Gonza´lez-Cha´vez, M.C., Esparza-Garc´ıa, F.J., Rodriguez-Va´zguez, R., 2009. Toxicity assessment of soil amend- ed with tannery sludge, trivalent chromium and hexavalent chromi- um, using wheat, oat and sorghum plants. Journal of Hazardous Materials, 163(2-3), 829-834.

Meers, E., Hopgood, M., Lesage, E., Vervaeke, P., Tack, F.M.G. and Verloo, M.G., 2004. Enhanced phytoextraction: in search of EDTA alternatives. International Journal of Phytoremediation, 6(2), 95-109.

https://doi.org/10.1080/16226510490454777.

Moran, J.F., Klucas, R.V., Grayer, R.J., Abian, J. and Becana, M., 1997. Complexes of iron with phenolic compounds from soy- bean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radical Biology and Medicine, 22(5), 861-870. https://doi.org/10.1016/S0891-5849(96)00426-1.

Reeves, R.D and Baker, A.J.(2000) Metal accumulating plants. pp.193-229. In: Raskin I and Ensley BD (eds), Phytoremediation of Toxic Metals Using Plants to Clean up the Environment. John Wiley & Sons Inc, New York.

Rice-Evans, C.A., Miller, N.J. and Paganga, G., 1996. Structure-antioxidant activity relationships of flavonoids and phe- nolic acids. Free Radical Biology and Medicine, 20(7), 933-956. https://doi.org/10.1016/0891-5849(95)02227-9.

Rodrigues, F.A´., Jurick, W.M., Datnoff, L.E., Jones, J.B. and

Rollins, J.A., 2005. Silicon influences cytological and molecu- lar events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiological and Molecular Plant Pathology, 66(4), 144-159.

https://doi.org/10.1016/j.pmpp.2005.06.002.

Sakihama, Y., Mano, J.I., Sano, S., Asada, K. and Yamasaki, H., 2000. Reduction of phenoxyl radicals mediated by monode- hydroascorbate reductase. Biochemical and Biophysical Research Communications, 279(3), 949-954. https://doi.org/10.1006/bbrc.2000.4053.

Sasaki, M., Yamamoto, Y. and Matsumoto, H., 1996. Lignin de- position induced by aluminum in wheat (Triticum aestivum) roots. Physiologia Plantarum, 96(2), 193-198. https://doi.org/10.1111/j.1399-3054.1996.tb00201.x.

Sgherri, C., Cosi, E. and Navari-Izzo, F., 2003. Phenols and antioxidative status of Raphanus sativus grown in copper excess. Physiologia Plantarum, 118(1), 21-28. https://doi.org/10.1034/j.1399-3054.2003.00068.x.

Shanker, A.K., Cervantes, C., Loza-Tavera, H. and Avu- dainayagam, S., 2005. Chromium toxicity in plants. Environment International, 31(5), 739-753. https://doi.org/10.1016/j.envint.2005.02.003.

Vajpayee, P., Tripathi, R.D., Rai, U.N., Ali, M.B. and Singh, S.N., 2000. Chromium (VI) accumulation reduces chlorophyl- l biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere, 41(7), 1075-1082. https://doi.org/10.1016/S0045-6535(99)00426-9.

Wang J.Y., Su H.J. and Tan T.W., 2007. Study on reuse and treatment of tannery chrome effluents. Chinese Journal of Envi- ronmental Engineering, 1(1), 23-27.

Winkel-Shirley, B., 2002. Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology, 5(3), 218-223. https://doi.org/10.1016/S1369-5266(02)00256-X.

Yamasaki, H., Heshiki, R. and Ikehara, N., 1995. Leaf- goldenning induced by high light in Ficus microcarpa L. f., a trop- ical fig. Journal of Plant Research, 108(2), 171-180. https://doi.org/10.1007/BF02344341.

Yang, C.Q., Fang, X., Wu, X.M., Mao, Y.B., Wang, L.J. and Chen, X.Y., 2012. Transcriptional regulation of plant secondary metabolism. Journal of Integrative Plant Biology, 54(10), 703-712. https://doi.org/10.1111/j.1744-7909.2012.01161.x.

Yu, X.Z., Peng, X.Y. and Xing, L.Q., 2010. Effect of temper- ature on phytoextraction of hexavalent and trivalent chromium by hybrid willows. Ecotoxicology, 19(1), 61-68. https://doi.org/10.1007/s10646-009-0386-2.

Yu, X.Z. and Feng, X.H., 2016. Effects of trivalent chromium on biomass growth, water use efficiency and distribution of nutrient elements in rice seedlings. Applied Environmental Biotechnology, 1(1), 64-70.

https://doi.org/10.18063/AEB.2016.01.005.

Yu, X.Z., Zhang, F.F. and Liu, W., 2016. Chromium-induced

depression of 15N content and nitrate reductase activity in rice seedlings. International Journal of Environmental Science and Technology, 14(1), 29-36.

https://doi.org/10.1007/s13762-016-1130-0.

Zagoskina, N.V., Goncharuk, E.A. and Alyavina, A.K., 2007. Effect of cadmium on the phenolic compounds formation in the callus cultures derived from various organs of the tea plant. Rus- sian Journal of Plant Physiology, 54(2), 237-243. https://doi.org/10.1134/S1021443707020124.

Zar J.H., 1999. Biostatistical Analysis (4rd ed). New Jersey: Prentice Hall. pp. 231-261.




DOI: http://dx.doi.org/10.26789/AEB.2017.01.004

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Xiao-zhang Yu, Fei-Fei Zhang

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.