Nanocellulose isolation from Amorpha fruticosa by an enzyme-assisted pretreatment

VIEWS - 68 (Abstract) 18 (PDF)
Xiao Zhuo, Jie Wei, Jian-Feng Xu, Ru-Tan Pan, Gang Zhang, Yun-Long Guo, Xiao-Ying Dong, Ling Long, Yongfeng Li

Abstract


Nanocellulose has many advantages, such as a wide range of sources of raw materials, renewability, biodegradability, high aspect ratio and large specific surface area. It can be potentially used in medicine, electronics, information technology, energy industry, aerospace and some other high-technological fields.  For preparation of nanocellulose, it is particularly important to separate nanocellulose from  raw materials by an environment-friendly method with environmental protection awareness. Consequently, we here report an effective and environmental friendly method to isolate nanocellulose from a shrub plant, i.e., Amorpha fruticosa Linn. Firstly, the plant fiber is pretreated with chemicals to remove lignin and hemicellulose; then the derived purified cellulose is pretreated with enzyme hydrolysis, followed by slight treatment of high-pressure homogenization. The results showed that with the assistance of enzyme pretreatment, effective isolation of nanocellulose could be achieved,  resulting in materials with a uniform diameter distribution and an average value of about 10 nm.  The aspect ratio of the derived nanocellulose is greater than 1000. Such results showed that the method was green and effective for nanocellulose isolation, and the derived biomaterial as a unique biocompatible and high-strength biomass nanomaterial could be used in biomedical, environmental protection and other fields.


Keywords


cellulase; pretreatment;nanocellulose;Amorpha Fruticosa Linn

Full Text:

PDF

References


Abdul Khalil, H.P.S., Bhat, A.H. and Ireana Yusra, A.F., 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), 963-979. https://doi.org/10.1016/j.carbpol.2011.08.078.

Abe, K., Iwamoto, S. and Yano, H., 2007. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacro- molecules, 8(10), 3276-3278.

https://doi.org/10.1021/bm700624p.

de Campos, A., Correa, A.C., Cannella, D., de M Teixeira, E., Marconcini, J.M., Dufresne, A., Mattoso, L.H., Cassland, P. and Sanadi, A.R., 2013. Obtaining nanofibers from curaua´ and sugar- cane bagasse fibers using enzymatic hydrolysis followed by soni- cation. Cellulose, 20(3), 1491-1500. https://doi.org/10.1007/s10570-013-9909-3.

Dong, X.M., Revol, J.F. and Gray, D.G., 1998. Effect of micro- crystallite preparation conditions on the formation of colloid crys- tals of cellulose. Cellulose, 5(1), 19-32. https://doi.org/10.1023/A:1009260511939.

Dong, X.Y., Sun, T.P., Liu, Y.X., Li, C.H. and Li, Y.F., 2015.

Structure and properties of polymer-impregnated wood prepared by in-situ polymerization of reactive monomers. BioResources, 10(4), 7854-7864.

https://doi.org/10.15376/biores.10.4.7854-7864.

Dong, X.Y., Zhuo, X., Liu, C.H., Wei, J., Zhang, G., Pan, R.T and Li, Y.F., 2016. Improvement of decay resistance of wood by in-situ hybridization of reactive monomers and nano-SiO2 within wood. Applied Environmental Biotechnology, 1(2), 56-62.

Dong, X.Y., Zhuo, X., Wei, J., Zhang, G. and Li, Y.F., 2017. Wood-Based nanocomposite derived by in Situ formation of or- ganic Inorganic hybrid polymer within wood via a Sol-Gel method. ACS Applied Materials & Interfaces, 9(10), 9070-9078. https://doi.org/10.1021/acsami.7b01174.

Gardner, D.J., Oporto, G.S., Mills, R. and Samir, M.A.S.A., 2008. Adhesion and surface issues in cellulose and nanocellulose. Journal of Adhesion Science and Technology, 22(5-6), 545-567. https://doi.org/10.1163/156856108X295509.

Gawryla, M.D., van den Berg, O., Weder, C. and Schiraldi, D.A., 2009. Clay aerogel/cellulose whisker nanocomposites: a nanoscale wattle and daub. Journal of Materials Chemistry, 19(15), 2118-2124.

https://doi.org/10.1039/b823218k.

Hayashi, N., Kondo, T. and Ishihara, M., 2005. Enzymati- cally produced nano-ordered short elements containing cellulose Iβ crystalline 21/bm061215pdomains. Carbohydrate Polymers, 61(10), 191-197.

https://doi.org/10.1016/j.carbpol.2005.04.018.

Janardhnan, S. and Sain, M.M., 2007. Isolation of cellulose microfibrils-an enzymatic approach. BioResources, 1(2), 176-188. Janardhnan, S. and Sain, M.M., 2011. Targeted disruption of hy- droxyl chemistry and crystallinity in natural fibers for the isolation of cellulose nano-fibers via enzymatic treatment. BioResources,

(2), 1242-1250.

Korhonen, J.T., Hiekkataipale, P., Malm, J., Karppinen, M., Ikkala, O. and Ras, R.H., 2011. Inorganic hollow nanotube aero- gels by atomic layer deposition onto native nanocellulose tem- plates. ACS Nano, 5(3), 1967-1974. https://doi.org/10.1021/nn200108s.

Lin, N. and Dufresne, A., 2014. Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59, 302-325.

https://doi.org/10.1016/j.eurpolymj.2014.07.025.

Martins, M.A., Teixeira, E.M., Correˆa, A.C., Ferreira, M. and Mattoso, L.H.C., 2011. Extraction and characterization of cellu- lose whiskers from commercial cotton fibers. Journal of Materials Science, 46(24), 7858.

https://doi.org/10.1007/s10853-011-5767-2.

Moon, R.J., Martini, A., Nairn, J., Simonsen, J. and Young- blood, J., 2011. Cellulose nanomaterials review: structure, proper- ties and nanocomposites. Chemical Society Reviews, 40(7), 3941- 3994.

https://doi.org/10.1039/c0cs00108b.

Nickerson, R.F. and Habrle, J.A., 1947. Cellulose intercrys- talline structure. Industrial & Engineering Chemistry, 39(11), 1507-1512.

Olsson, R.T., Samir, M.A.S.A, Salazar-Alvarez, G., Belova, L., Stro¨m, V., Berglund, L.A., Ikkala, O., Nogues, J. and Gedde, U.W., 2010. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nature Nan- otechnology, 5(8), 584-588. https://doi.org/10.1038/nnano.2010.155.

Pa¨a¨kko¨, M., Ankerfors, M., Kosonen, H., Nyka¨nen, A., Aho- la, S., O¨sterberg, M., Ruokolainen, J., Laine, J., Larsson, P.T.,

Ikkala, O. and Lindstrm, T., 2007. Enzymatic hydrolysis com- bined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8(6), 1934-1941.

https://doi.org/10.1021/bm061215p.

Pa¨a¨kko¨, M., Vapaavuori, J., Silvennoinen, R., Kosonen, H., Ankerfors, M., Lindstro¨m, T., Berglund, L.A. and Ikkala, O., 2008. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter, 4(12), 2492-2499.

https://doi.org/10.1039/B810371B.

Satyamurthy, P., Jain, P., Balasubramanya, R.H. and Vignesh- waran, N., 2011. Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrol-ysis. Carbohydrate Polymers, 83(1), 122-129. https://doi.org/10.1016/j.carbpol.2010.07.029.

Sinnott, M.L., 1998. The cellobiohydrolases of Trichoderma reesei: a review of indirect and direct evidence that their function is not just glycosidic bond hydrolysis. Biochemical Society Trans- actions, 26(2), 160-164.

https://doi.org/10.1042/bst0260160.

Siqueira, G., Tapin-Lingua, S., Bras, J., da Silva Perez, D. and Dufresne, A., 2010. Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose, 17(6), 1147-1158. https://doi.org/10.1007/s10570-010-9449-z.

Tanpichai, S., Quero, F., Nogi, M., Yano, H., Young, R.J., Lindstro¨m, T., Sampson, W.W. and Eichhorn, S.J., 2012. Effective Young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules, 13(5), 1340-1349. https://doi.org/10.1021/bm300042t.

Thonart, P., Paquot, M. and Mottet, A., 1980. Enzyme hydroly- sis of paper pulps. Influence of mechanical treatments [hard-, soft- wood]. Holzforschung, 33(6), 197-202. https://doi.org/10.1515/hfsg.1979.33.6.197.

Uetani, K. and Yano, H., 2010. Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules, 12(2), 348-353. https://doi.org/10.1021/bm101103p.

Valo, H., Arola, S., Laaksonen, P., Torkkeli, M., Peltonen, L., Linder, M.B., Serimaa, R., Kuga, S., Hirvonen, J. and Laaksonen, T., 2013. Drug release from nanoparticles embedded in four differ- ent nanofibrillar cellulose aerogels. European Journal of Pharma- ceutical Sciences, 50(1), 69-77. https://doi.org/10.1016/j.ejps.2013.02.023.

Wang, H.Y., Gong, Y.T. and Wang, Y., 2014. Cellulose-based hydrophobic carbon aerogels as versatile and superior adsorbents for sewage treatment. RSC Advances, 4(86), 45753-45759. https://doi.org/10.1039/C4RA08446B.

Wang, W., Mozuch, M.D., Sabo, R.C., Kersten, P., Zhu, J.Y. and Jin, Y.C., 2015. Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization. Cellulose, 22(1), 351-361. https://doi.org/10.1007/s10570-014-0465-2.

Zhao, H.P., Feng, X.Q. and Gao, H.J., 2007. Ultrasonic tech- nique for extracting nanofibers from nature materials. Applied Physics Letters, 90(7), 17-18.

https://doi.org/10.1063/1.2450666.

Zhuo, X., Liu, C., Pan, R.T., Dong, X.Y. and Li, Y.F., 2017.

Nanocellulose mechanically isolated from amorpha fruticosa linn. ACS Sustainable Chemistry & Engineering, 5(5), 4414-4420. https://doi.org/10.1021/acssuschemeng.7b00478.

Zimmermann, T., Bordeanu, N. and Strub, E., 2010. Properties of nanofibrillated cellulose from different raw materials and its re- inforcement potential. Carbohydrate Polymers, 79(4), 1086-1093. https://doi.org/10.1016/j.carbpol.2009.10.045.




DOI: http://dx.doi.org/10.26789/AEB.2017.01.005

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Yongfeng Li

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.