Applied Environmental Biotechnology

Editor-in-Chief:Gu, Ji-Dong



Publishing Frequency : half-yearly

Article Processing Charges(APC):Click here for more details

Publishing Model : Open Access

Journal no : 2

About the Journal

The journal of "Applied Environmental Biotechnology (AEB)" provides a forum in the broad research field of biotechnology in terms of advances, innovation and technologies made at molecular, process, community or ecosystem levels. It will emphasize on the basic biochemistry, molecular processes and molecular biology where the molecules and genes remain the central core of analysis.



Notice of Inclusion in the CAS database

It is a great pleasure to share the great news that Applied Environmental Biotechnology (AEB) (ISSN 2424-9092)  has been included in the CAS database. It takes some time to complete the procedure. AEB will be available in the CAS database soon.  
Posted: 2018-03-09
More Announcements...

Vol 3, No 1 (2018)

Table of Contents

Biodegradation and Bioremediation

170 Views, 14 PDF Downloads
Yongyan Niu, Khan Aman, Zhengjun Chen, Shuai Zhao, Ke-Jia Wu, Xingpeng Xiao, Xiangkai Li


In this study, a sediment microbial fuel cell (SMFC) system for the simultaneous biodegradation of organic matter and detoxification of hexavalent chromium Cr (VI) was investigated. The total organic carbon (TOC) removal rate of the SMFC with Cr (VI) was 30.07%, which was significantly higher than that in a SMFC without Cr (VI) (13.74%). In the SMFC with Cr (VI), the maximum values of open-circuit voltage (OCV) and power density were 408 mV and 4.8 mW/m2, respectively. During the long-term operation of the SMFC with Cr (VI), 25 mg/L of Cr (VI) were completely reduced from all four consecutive batches over 48 days. MiSeq sequencing revealed that the biofilm microbial community of the anode comprised of Bacteroidetes (42.9%), Proteobacteria (33.6%), Chloroflexi (7.5%), and Euryarchaeota (7.5%) as the predominant phyla. Compared with that of the sediment, certain families were enriched; they included Pseudomonadaceae (46.88-fold), Flavobacteriaceae (5.05-fold), and Syntrophaceae (4.48-fold), which are organic matter-degrading bacteria. These results suggest that SMFCs are useful for TOC removal and detoxification of heavy metals in remediation of contaminated lakes.